Skip to main content

Maximum Weld Reinforcement and Weld Joint Categories in ASME Section VIII Division 1

Maximum Weld Reinforcement and Weld Joint Categories in ASME Section VIII Division 1

Introduction:

ASME Section VIII Division 1 is a widely recognized code for designing and constructing pressure vessels. Within this code, specific guidelines are provided for weld reinforcement and weld joint categorization. In this blog post, we will explore the maximum weld reinforcement as per UW-35 and the four categories (A, B, C, and D) of weld joints according to UW-3 in ASME Section VIII Division 1.

Maximum Weld Reinforcement (UW-35):

Weld reinforcement refers to the excess weld metal that extends beyond the original base material surface. ASME Section VIII Division 1 provides guidance on the maximum allowed weld reinforcement in UW-35. The thickness of the weld reinforcement on each face shall not exceed the following:


A reduction in thickness due to the welding process is acceptable provided all of the following conditions are met:

(1) The reduction in thickness shall not reduce the material of the adjoining surfaces below the minimum required thickness at any point.

(2) The reduction in thickness shall not exceed 1/32 in. (0.8 mm) or 10% of the nominal thickness of the adjoining surface, whichever is less.

 


(c) When a singlewelded butt joint is made by using a backing strip which is left in place [Type No. (2) of Table UW-12], the requirement for reinforcement applies only to the side opposite the backing strip.

 (d) To assure that the weld grooves are completely filled so that the surface of the weld metal at any point does not fall below the surface of the adjoining base materials weld metal may be added as reinforcement on each face of the weld. 

Weld Joint Categories (UW-3):

ASME Section VIII Division 1 categorizes weld joints into four categories: A, B, C, and D, based on their quality and inspection requirements. These categories provide a framework for assessing the level of quality control and examination required for each type of weld joint.

1. Category A:

Longitudinal and spiral welded joints within the main shell, communicating chambers, transitions
in diameter, or nozzles; any welded joint within a sphere, within a formed or flat head, or within the side plates of a flat‐sided vessel; any butt-welded joint within a flat tubesheet; circumferential welded joints connecting hemispherical heads to main shells, to transitions in diameters, to nozzles, or to communicating chambers.

2. Category B:

Circumferential welded joints within the main shell, communicating chambers,66 nozzles, or transitions in diameter including joints between the transition and a cylinder at either the large or small end; circumferential welded joints connecting formed heads other than hemispherical to main shells, to transitions in diameter, to nozzles, or to communicating chambers.66 Circumferential welded joints are butt joints if the half‐apex angle, α, is equal to or less than 30 deg and angle joints when α is greater than 30 deg. (See above Figure.)

3. Category C:

Welded joints connecting flanges, Van Stone laps, tubesheets, or flat heads to main shell, to formed heads, to transitions in diameter, to nozzles, or to communicating chambers66 any welded joint connecting one side plate67 to another side plate of a flat‐sided vessel.

4. Category D:

Welded joints connecting communicating chambers or nozzles to main shells, to spheres, to transitions in diameter, to heads, or to flat‐sided vessels, and those joints connecting nozzles to communicating chambers (for nozzles at the small end of a transition in diameter, see Category B).

Conclusion:

Adhering to the guidelines set forth in ASME Section VIII Division 1 ensures that welds in pressure vessels are constructed with appropriate reinforcement and undergo the necessary quality control measures. The maximum weld reinforcement limits defined in UW-35 help maintain the structural integrity of welded joints, while the categorization of weld joints in UW-3 provides a framework for determining the level of quality control and inspection required for different types of welds. By following these standards, engineers and manufacturers can ensure the safe and reliable operation of pressure vessels in various industries.

Comments

Followers

Popular posts from this blog

Welder qualification procedure as per ASME Sec IX

  WELDER QUALIFICATON PROCEDURE (FOR PLATE &PIPING) 1.      Test positions for performance qualification 1.1   Positions (Groove weld) plate & pipe: - An angular deviation of plus or minus 15° From specified horizontal and vertical planes is permitted during welding. Position for qualification as per ASME IX QW-461.3 & QW-461.4 Table. 1 Plate Positions Pipe Positions a)        Vertical Position 3G (Fig.1a) b)        Overhead Positions 6G- (Fig.1b)   b) Overhead Position 4G (Fig.1a)               Fig. 1 Position of test peace for Groove weld (Plate & Pipe). 1.2   Test Positions for Fillet Welds: - An angular deviation of plus or minus 15° from the specified horizontal and vertical planes is permitted during welding. Position for qualification as per ASME QW-461.5 Table.2 Fillet joint Positions         a)   Vertical 3F        b)

Lathe machine

                                                       TYPES OF LATHE  Lathes are manufactured in a variety of types and sizes, from very small bench lathes used for precision work to huge lathes used for turning large steel shafts. But the principle of operation and function of all types of lathes is same. The different types of lathes are: 1. Speed lathe ( a ) Wood working ( b ) Spinning ( c ) Centering ( d ) Po1ishing   2. Centre or engine lathe ( a ) Be1t drive ( b ) Individual motor drive ( c ) Gear head lathe   3. Bench lathe   4. Tool room Lathe   5. Capstan and Turret 1athe   6. Special purpose lathe ( a ) Whee1 lathe ( b ) Gap bed lathe ( c ) Dup1icating lathe ( d ) T-lathe   7.Automatic lathe Speed Lathe Speed lathe is simplest of all types of lathes in construction and operation. The important parts of speed lathe are following- (1) Bed (2) Headstock (3) Tailstock, and (4) Tool post mounted on an adjustable slide.   It has no

Minimum required thickness of process pipeline (Engineering calculation)

Pressure Calculation Calculator:Minimum required thickness of pipeline for service as per ASME B31.3 Design Pressure (PSI): Diameter (inch): Stress 'S' (PSI): Quality Factor 'E': Weld Joint Reduction Factor 'W': Coefficient 'Y': Calculate Results: Min. Reqired Thickness tm (inch): 12.5% Allowance (inch): Mini. Required Thicknes (mm): After getting 12.5% allowance (inch) value again check ASME B36.10 or API 574 piping thickness table and choose thicknes value higher then this value for service. Calculating the Minimum Required Thickness of Pipelines for Service as per ASME B31.3 Introduction: In the field of engineering, designing safe and reliable pipelines is of utmost importance. The American Society of Mechanical Engineers (ASME) B31.3 code provides guidelines for the design and construction of process piping systems. One cr

Ultrasonic Flaw Detection: Unveiling the Power of Sound in Non-Destructive Testing

Introduction: Non-destructive testing (NDT) techniques play a vital role in ensuring the integrity and safety of structures, materials, and components in various industries. Among the array of NDT methods available, ultrasonic flaw detection stands out as a powerful and versatile technique. In this blog, we will explore the fundamentals of ultrasonic flaw detection, its applications, and the benefits it offers in detecting and characterizing defects without causing damage. Join us as we dive into the world of sound waves and their ability to reveal hidden flaws. 1. Understanding Ultrasonic Flaw Detection: 1.1 The Basics of Ultrasonics: We'll introduce the principles of ultrasonics, explaining how sound waves are generated, propagated, and detected. 1.2 Interaction with Materials: We'll explore how ultrasonic waves interact with different materials, including their reflection, transmission, and absorption behaviors. 2. How Ultrasonic Flaw Detection Works: 2.1 Transducers: We'

Calculator: Remaining Thickness of Pressure vessel API 510 (Identify remaining thickness is safe/unsafe)

Thickness Calculation Remaining Thickness of Pressure vessel to identify safe for service Design Pressure (psi): Radius (inch): Stress (psi) ASME Sec VIII Div 1: Efficiency 'E': T(nominal) (inch): Metal Loss (inch): Calculate   Remaining Thickness of Pressure vessel API 510  (Identify remaining thickness is safe/unsafe) Introduction: In the field of pressure vessel inspection and maintenance, determining the remaining thickness of the vessel is of utmost importance. This calculation helps assess the structural integrity of the vessel and ensures its safe operation. In this blog post, we will explore the method for calculating the remaining thickness of a pressure vessel as per API 510 standards. Formula for Minimum Thickness (Tmin): The API 510 standard

Purging Gas in Gas Tungsten Arc Welding: Enhancing Weld Quality and Integrity

Introduction: In the realm of welding, achieving high-quality welds with excellent integrity is paramount. One crucial technique that aids in this endeavor is the use of purging gas. Purging gas plays a vital role in preventing oxidation and ensuring a clean, controlled environment during welding. In this blog, we will explore the significance of purging gas, its purpose, techniques, and benefits in various welding applications. Join us as we delve into the world of purging gas and its impact on weld quality. Back purging is most important phenomenon in GTAW process because this process is mostly used in Stainless steel. Stainless steel is widely used fabrication of chemical, petrochemical, food etc. plant. All thin section and root welding is performed by GTAW process. GTAW process is also very popular in Aluminum welding. In all large diameter pipe the root pass welding is done by GTAW process where the back purging is mandatory. Purging gas protect the weld metal fro

Energy efficiency in Thermal utilities (Chapter 3: Steam System)

  Energy efficiency in Thermal utilities  (Chapter 3: Steam System) Introduction  Steam has been a popular mode of conveying energy since the industrial revolution. Steam is used for generating power and also used in process industries such as sugar, paper, fertilizer, refineries, petrochemicals, chemical, food, synthetic fiber and textiles. The following characteristics of steam make it so popular and useful to the industry:  ¢ Highest specific heat and latent heat ¢ Highest heat transfer coefficient e Easy to control and distribute Cheap and inert   Properties of Steam  Water can exist in the form of solid, liquid and gas as ice, water and steam respectively. If heat energy is added to water, its temperature rises until a value is reached at which the water can no longer exist as a liquid. We call this the “saturation” point and with any further addition of energy, some of the water will boil off as steam. This evaporation requires relatively large amounts of energy, and whil